If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+24x=9
We move all terms to the left:
7x^2+24x-(9)=0
a = 7; b = 24; c = -9;
Δ = b2-4ac
Δ = 242-4·7·(-9)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{23}}{2*7}=\frac{-24-6\sqrt{23}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{23}}{2*7}=\frac{-24+6\sqrt{23}}{14} $
| 5x+7x-6=90 | | 1/2x+3=3.2 | | 6z-134=64 | | 17(12x-7+2x)=7 | | 45.5=(2x)^2/(0.50−x)(0.25−x) | | 4(y+-4)=8 | | y–7=0.5(–4) | | V+v=-8 | | 4n+1/3=3/4 | | -52=-6.5k | | 10x+120=310 | | x-6/5=-21 | | 25=-u/3 | | 3.5(x–2)=12–0.5x | | 12y=52 | | ,2x÷3=6 | | 3(2x+7)=-2(x-3)-41 | | 2x^2+5x=600 | | 10-7x=53 | | 3-6p+5=8 | | 12z+6=150 | | (22x/24)+3=x | | -5/6x=-60 | | 5x2+4=14 | | 22/24x+3=x | | (2x)/5=12/8 | | x/7+12=30 | | 6x–3x–24=36 | | 192^2-7x=0 | | 9y−2=25 | | {3/8*2/3x}+2/3x+3=x | | 5+10+58+x=180 |